検索したい科目/教員名/キーワードを入力し「検索開始」ボタンをクリックしてください。
※教員名では姓と名の間に1文字スペースを入れずに、検索してください。
令和2年度以降入学者 | データサイエンス応用演習 | ||||
---|---|---|---|---|---|
教員名 | 菅野剛 | ||||
単位数 | 1 | 課程 | 前期課程 | 開講区分 | 文理学部 |
科目群 | 社会学専攻 | ||||
学期 | 後期 | 履修区分 | 選択必修 |
授業形態 | 遠隔授業(オンデマンド型) |
---|---|
授業の形態 | Google Chrome ブラウザ を使い Google Classroom で行います (クラスコード は Canvas に掲載)。 必要な場合は Google Meet、 Google Chat、 Hubs などによる同時双方向で対応します。 |
Canvas LMSコースID・コース名称 | WG1607A39 2024データサイエンス応用演習(菅野剛・後・木1) |
授業概要 | Programming and Data Science |
授業のねらい・到達目標 | Beware of confirmation bias and train yourself to make decisions as logically as possible. Familiarize yourself with English, statistics, and programming, which are the lingua franca of the world. |
授業の形式 | 講義、演習 |
授業の方法 | Prior learning is required by reading the textbook, studying online, and performing programming and data analysis. Students learn, practice, and get feedback. An NU-MailG account and enrollment in Google Classroom are required. |
授業計画 | |
---|---|
1 |
Google Classroom, joining a class, Google Colaboratory, Python, Introduction to Programming and Data Science.
【事前学習】Pre-course work: Introduction to Programming and Data Science (2時間) 【事後学習】Homework: Introduction to Programming and Data Science (2時間) |
2 |
Optimization and the Knapsack Problem. Assessment and feedback.
【事前学習】Pre-course work: Optimization and the Knapsack Problem (2時間) 【事後学習】Homework: Optimization and the Knapsack Problem (2時間) |
3 |
Decision Trees and Dynamic Programming. Assessment and feedback.
【事前学習】Pre-course work: Decision Trees and Dynamic Programming (2時間) 【事後学習】Homework: Decision Trees and Dynamic Programming (2時間) |
4 |
Graph Problems. Assessment and feedback.
【事前学習】Pre-course work: Graph Problems (2時間) 【事後学習】Homework: Graph Problems (2時間) |
5 |
Plotting. Assessment and feedback.
【事前学習】Pre-course work: Plotting (2時間) 【事後学習】Homework: Plotting (2時間) |
6 |
Stochastic Thinking. Assessment and feedback.
【事前学習】Pre-course work: Stochastic Thinking (2時間) 【事後学習】Homework: Stochastic Thinking (2時間) |
7 |
Random Walks. Assessment and feedback.
【事前学習】Pre-course work: Random Walks (2時間) 【事後学習】Homework: Random Walks (2時間) |
8 |
Inferential Statistics. Assessment and feedback.
【事前学習】Pre-course work: Inferential Statistics (2時間) 【事後学習】Homework: Inferential Statistics (2時間) |
9 |
Monte Carlo Simulations. Assessment and feedback.
【事前学習】Pre-course work: Monte Carlo Simulations (2時間) 【事後学習】Homework: Monte Carlo Simulations (2時間) |
10 |
Sampling and Standard Error. Assessment and feedback.
【事前学習】Pre-course work: Sampling and Standard Error (2時間) 【事後学習】Sampling and Standard Error (2時間) |
11 |
Experimental Data Part 1. Assessment and feedback.
【事前学習】Pre-course work: Experimental Data Part 1 (2時間) 【事後学習】Homework: Experimental Data Part 1 (2時間) |
12 |
Experimental Data Part 2. Assessment and feedback.
【事前学習】Pre-course work: Experimental Data Part 2 (2時間) 【事後学習】Homework: Experimental Data Part 2 (2時間) |
13 |
Machine Learning. Assessment and feedback.
【事前学習】Pre-course work: Machine Learning (2時間) 【事後学習】Homework: Machine Learning (2時間) |
14 |
Statistical Fallacies. Assessment and feedback.
【事前学習】Pre-course work: Statistical Fallacies (2時間) 【事後学習】Homework: Statistical Fallacies (2時間) |
15 |
Programming and Data Science. Assessment and feedback.
【事前学習】Pre-course work: Programming and Data Science (2時間) 【事後学習】Homework: Programming and Data Science (2時間) |
その他 | |
---|---|
教科書 | 適宜紹介する。 |
参考書 | John V. Guttag, Introduction to Computation and Programming Using Python: With Application to Understanding Data., The MIT Press, 2016, 2 edition P.G.ホーエル 『初等統計学』 培風館 1981年 第4版 T.H.ウォナコット・R.J.ウォナコット 『統計学序説』 培風館 1978年 P.G.ホーエル 『入門数理統計学』 培風館 1978年 長野宏宣・中川晋一・蒲池孝一・櫻田武嗣・坂口正芳・八尾武憲・衣笠愛子・穴山朝子 『IT技術者の長寿と健康のために』 近代科学社 2016年 盛山和夫 『社会調査法入門』 有斐閣 2004年 今井耕介 『社会科学のためのデータ分析入門(上)』 岩波書店 2018年
|
成績評価の方法及び基準 | レポート:Programming homework(30%)、授業内テスト:Online tests(20%)、授業参画度:Reaction or response papers(50%) Self-directedness and Intellectual flexibility. |
オフィスアワー | Ask any questions at any time on Google Classroom. Appointment times will generally be available after the class. |