検索したい科目/教員名/キーワードを入力し「検索開始」ボタンをクリックしてください。
※教員名では姓と名の間に1文字スペースを入れずに、検索してください。
令和2年度以降入学者 | データサイエンス応用研究 | ||||
---|---|---|---|---|---|
教員名 | 菅野剛 | ||||
単位数 | 2 | 課程 | 前期課程 | 開講区分 | 文理学部 |
科目群 | 社会学専攻 | ||||
学期 | 前期 | 履修区分 | 選択必修 |
授業形態 | 遠隔授業(オンデマンド型) |
---|---|
授業の形態 | Google Chrome ブラウザ を使い Google Classroom で行います (クラスコード は Canvas に掲載)。 必要な場合は Google Meet、 Google Chat、 Hubs などによる同時双方向で対応します。 |
Canvas LMSコースID・コース名称 | WG1407A35 2024データサイエンス応用研究(菅野剛・前・木1) |
授業概要 | Introduction to Programming and Data Science |
授業のねらい・到達目標 | Beware of confirmation bias and train yourself to make decisions as logically as possible. Familiarize yourself with English, statistics, and programming, which are the lingua franca of the world. |
授業の形式 | 講義、演習 |
授業の方法 | Prior learning is required by reading the textbook, studying online, and performing programming and data analysis. Students learn, practice, and get feedback. An NU-MailG account and enrollment in Google Classroom are required. |
授業計画 | |
---|---|
1 |
Google Classroom, joining a class, Google Colaboratory, Python, Introduction to Programming and Data Science.
【事前学習】Pre-course work: Introduction to Programming and Data Science (2時間) 【事後学習】Homework: Introduction to Programming and Data Science (2時間) |
2 |
Introduction to Python. Assessment and feedback.
【事前学習】Pre-course work: Introduction to Python (2時間) 【事後学習】Homework: Introduction to Python (2時間) |
3 |
Core Elements of Programs. Assessment and feedback.
【事前学習】Pre-course work: Core Elements of Programs (2時間) 【事後学習】Homework: Core Elements of Programs (2時間) |
4 |
Simple Algorithms. Assessment and feedback.
【事前学習】Pre-course work: Simple Algorithms (2時間) 【事後学習】Homework: Simple Algorithms (2時間) |
5 |
Functions, scoping, and abstraction. Assessment and feedback.
【事前学習】Pre-course work: Functions (2時間) 【事後学習】Homework: Functions (2時間) |
6 |
Tuples and Lists. Assessment and feedback.
【事前学習】Pre-course work: Tuples and Lists (2時間) 【事後学習】Homework: Tuples and Lists (2時間) |
7 |
Dictionaries. Assessment and feedback.
【事前学習】Pre-course work: Dictionaries (2時間) 【事後学習】Homework: Dictionaries (2時間) |
8 |
Testing and Debugging. Assessment and feedback.
【事前学習】Pre-course work: Testing and Debugging (2時間) 【事後学習】Homework: Testing and Debugging (2時間) |
9 |
Exceptions and Assertions. Assessment and feedback.
【事前学習】Pre-course work: Exceptions and Assertions (2時間) 【事後学習】Homework: Exceptions and Assertions (2時間) |
10 |
Classes and object-oriented programming. Assessment and feedback.
【事前学習】Pre-course work: Classes and Inheritance (2時間) 【事後学習】Homework: Classes and Inheritance (2時間) |
11 |
An Extended Example. Assessment and feedback.
【事前学習】Pre-course work: An Extended Example (2時間) 【事後学習】Homework: An Extended Example (2時間) |
12 |
Computational Complexity. Assessment and feedback.
【事前学習】Pre-course work: Computational Complexity (2時間) 【事後学習】Homework: Computational Complexity (2時間) |
13 |
Some simple algorithms and data structures. Assessment and feedback.
【事前学習】Pre-course work: Searching and Sorting Algorithms (2時間) 【事後学習】Homework: Searching and Sorting Algorithms (2時間) |
14 |
Plotting and more about classes. Assessment and feedback.
【事前学習】Pre-course work: Plotting (2時間) 【事後学習】Homework: Plotting (2時間) |
15 |
Programming and Data Science. Assessment and feedback.
【事前学習】Pre-course work: Programming and Data Science (2時間) 【事後学習】Homework: Programming and Data Science (2時間) |
その他 | |
---|---|
教科書 | 適宜紹介する。 |
参考書 | John V. Guttag, Introduction to Computation and Programming Using Python: With Application to Understanding Data., The MIT Press, 2016, 2 edition P.G.ホーエル 『初等統計学』 培風館 1981年 第4版 T.H.ウォナコット・R.J.ウォナコット 『統計学序説』 培風館 1978年 P.G.ホーエル 『入門数理統計学』 培風館 1978年 『IT技術者の長寿と健康のために (長野宏宣・中川晋一・蒲池孝一・櫻田武嗣・坂口正芳・八尾武憲・衣笠愛子・穴山朝子)』 近代科学社 2016年 盛山和夫 『社会調査入門』 有斐閣 2004年 今井耕介 『社会科学のためのデータ分析入門(上)』 岩波書店 2018年
|
成績評価の方法及び基準 | 授業内テスト:Online tests(50%)、授業参画度:Reaction or response papers(50%) Self-directedness and Intellectual flexibility. |
オフィスアワー | Ask any questions at any time on Google Classroom. Appointment times will generally be available after the class. |